

Two Stage Biorelevant Dissolution Guide

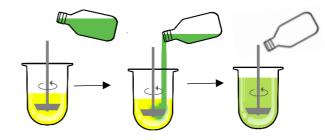
This guide uses the Two Stage Biorelevant Dissolution Kit

- ✓ Simulate how a drug product behaves when it contacts the stomach fluid (FaSSGF) and then when the fluid is converted into intestinal fluid (FaSSIF)
- ✓ Particularly important for understanding different formulations of basic drugs with a higher solubility at acidic stomach pH compared to higher intestinal pH
- ✓ Results will reveal the drug's tendency to either supersaturate or precipitate from its formulation in gastrointestinal fluids
- ✓ Results can help formulation development and optimisation

The **Two Stage Biorelevant Dissolution Kit** (Product Code: 2ST-KIT) contains everything you need to run this experiment and it is available to buy here: <u>https://biorelevant.com/Two-Stage-Biorelevant-Dissolution/buy/</u>

TIP

Before carrying out two stage biorelevant dissolution, it is strongly suggested to carry out dissolution of the test formulation in FaSSIF (900mL per vessel). For_comparative biorelevant dissolution follow this link https://biorelevant.com/#dissolution wizard_tab

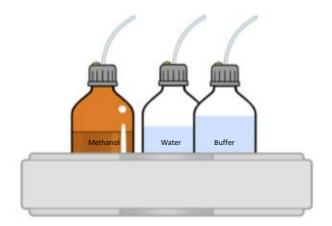

Experiment:	Two stage biorelevant dissolution
Dosage form:	Immediate release (IR) tablet or capsule
Equipment:	USP apparatus 2, HPLC

Objective

a. Evaluate HPLC method

b. Carry out two stage biorelevant dissolution

SECTION A: Evaluate HPLC Method


A1) FaSSIF preparation

 ✓ Prepare FaSSIF medium with 3F Powder[®] and the diluted FaSSIF Buffer Concentrate for HPLC testing using our online Media Prep Tool. Typically, about 300mL of "FaSSIF" are required

A2) Mobile phase

 A QC HPLC method can normally be used as a starting point for analysis. Methanol is the preferred organic solvent for mobile phase in combination with appropriate buffer

A3) Stationary phase

- ① Check column suitability for drug analysis
- (i) QC methods with C18 columns (5 μ m and 3 μ m) can typically be used

A4) Calculate the Maximum theoretical drug concentration

Theoretical max drug conc. = $\frac{\text{Dose of drug substance in formulation}}{\text{Volume in the dissolution vessel }*}$

* recommended volume is 900 mL for FaSSIF

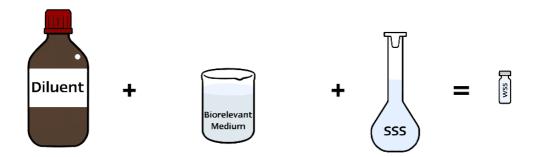
These values will help you establish the amount of drug required to prepare Primary standard solution.

A5) Primary standard solution (PSS)

① Organic Solvent (e.g. methanol and/or DMSO) of a QC methods can typically be used to dissolve drug substance to prepare PSS

A6) Diluent for standards and dissolution samples

- ① The diluent of QC methods can be used if compatible with FaSSIF
- (i) Acetonitrile is **NOT** recommended
- Methanol with water (buffered or unbuffered) mixtures can generally be used for dilution of PSS to prepare secondary standard solution (SSS) and dilution of dissolution samples

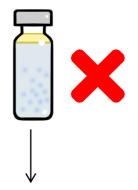

① Dilute the FaSSIF with diluent, checking different dilution ratios and observe homogeneity and physical stability

Diluted samples should look homogenous

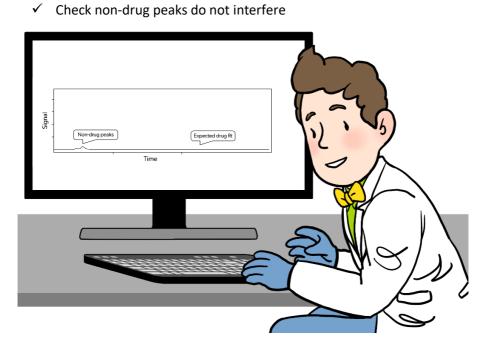
- ① Keep the matrix similar;
 - Use diluent (optionally), FaSSIF and SSS to prepare working standard solution (WSS)
 - Dilute filtered dissolution samples with diluent

A7) Check interference and stability of fresh samples

- ✓ Prepare **diluted samples** of:
 - FaSSIF
 - drug without FaSSIF
 - drug with FaSSIF (e.g. WSS)
 - dosage form (e.g. drug and excipients) with FaSSIF



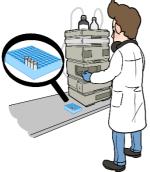
✓ Check freshly diluted samples have no precipitate


- ✓ Inject samples to check interference and chemical stability
- ✓ Store samples for stability (typically 24hours)

- ✓ Do not inject
- ✓ Adjust diluent and/or ratio to keep samples homogenous

✓ Determine drug peak area and check quality of chromatograms

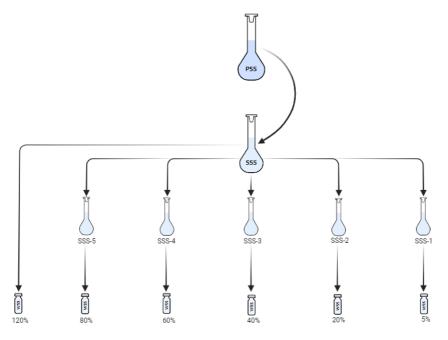
A8) Stability of stored samples


- Re-inspect stored diluted samples which were previously prepared in Section A7:
 - FaSSIF
 - drug without FaSSIF
 - drug with FaSSIF (e.g. WSS)
 - dosage form (e.g. drug and excipients) with FaSSIF

✓ Re-check stored diluted samples have no precipitate

 Re-inject stored samples to check chemical stability

- ✓ Do not re-inject
- Re-adjust diluent and/or ratio to keep stored samples homogenous



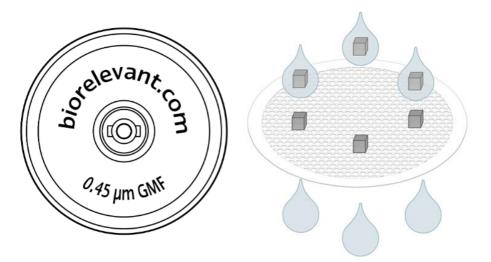
© Biorelevant.com Ltd

① Chromatogram drug peaks of fresh and stored samples should look similar and present equivalent results

() Establish linearity for range of analysis

() Establish limit of (drug) quantification

A9) Specificity and precision


- ✓ Carry out multiple injections of diluted sample containing dosage form with dissolution medium
- ✓ Check system and chromatographic properties do not substantially change

- If system properties change, consider washing cycles and/or a guard column
- If chromatographic properties change, consider adjusting method (for example flow rate, temperature, injection volume, solvent ratios)
- If further adaptions are still required, consider modifications (for example changing mobile phase, try a gradient or different solid phase)

A10) Filter adsorption

- ① Our 13mm diameter, 0.45µm GMF, inside a 25 mm casing with Luer lock filters are typically recommended for manual sampling. These filters do not leach into biorelevant media. 70 filters are included with the two stage biorelevant dissolution kit
- (i) A fresh filter should be used for each sampling time point

- ✓ Check filter does not adsorb drug at a low concentration, for example 10% to 20% of drug release
- ✓ If filter adsorbs, determine volume needed to pre-saturate

SECTION B: DISSOLUTION

B1) Media Preparation for two stage biorelevant dissolution

- ① 450mL of FaSSGF and 450mL of Concentrated FaSSIF are required for each vessel
- ① The preparation methods for n = 6 vessels are provided below:
- B1a) FaSSGF Preparation (2.8L includes 100mL overage):

1) MAKE BUFFER

2) ADD POWDER

3) STIR

-Stir until dissolved

-Add 0.167g of 3F Powder to the buffer

4) READY TO USE

-Use medium within 48 hours

TSBD-Beta V1.0

© Biorelevant.com Ltd

Page | 14 of 25

B1b) Concentrated FaSSIF (2.8L includes 100 mL overage 100 mL overage):

Important: For optimal reproducibility prepare this Concentrated FaSSIF just before starting the dissolution and use within 3 hours of preparation.

1) Make Two Stage FaSSIF Buffer

2) Pre- Heat 37°C

- **285.7g** of Two Stage Buffer Concentrate
- 2506.8g of purified water

3) Add Powder

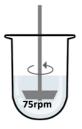
- Add 12.38g 3F Powder[®] to the Pre-heated Buffer
- Stir until dissolved

4) Weigh Concentrated FaSSIF

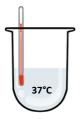
• Weigh **452.3g** (450 mL) of "Concentrated FaSSIF" into a container for each dissolution vessel

5) Maintain at 37°C

B2) Dissolution Parameters

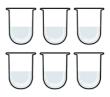

In general, biorelevant dissolution should be performed with the following parameters

B2a) For FaSSGF

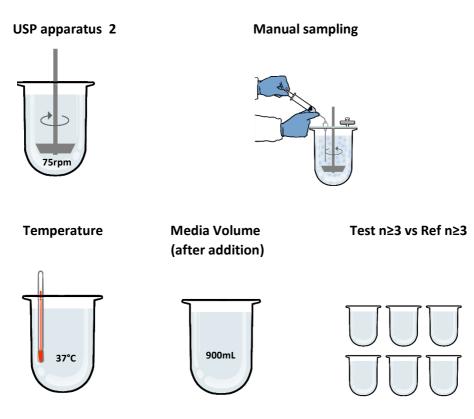

USP apparatus 2

Sinker*

Manual sampling


*if capsule floats

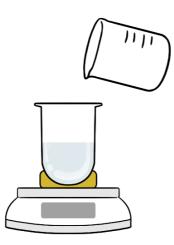
Media volume



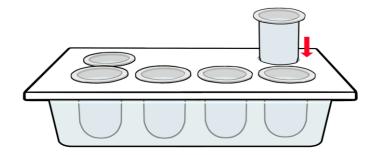
Test n≥3 vs Ref n≥3

B2b) After addition of Concentrated FaSSIF

B3) Dissolution Sampling

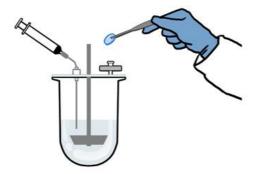

① Perform sampling at:

Medium	Sampling time points minutes
FaSSGF	5, 10, 20, 30, 45, 60
After addition of Concentrated FaSSIF	65, 75, 90, 120, 180

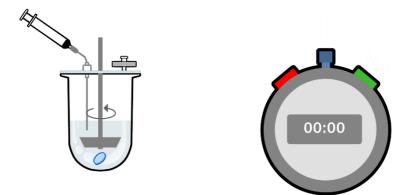

- ① Carefully observe and note the disintegration behaviour of the immediate release dosage form for the first 2 to 3 minutes
- ① After addition of Concentrated FaSSIF to FaSSGF, carefully observe the behaviour of drug within the vessels for least 5 minutes and note if there is a change in appearance

B4) FaSSGF dissolution set up

✓ Fill each vessel with 450mL of FaSSGF

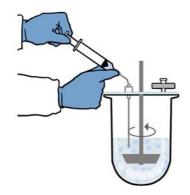


✓ Warm to 37°C



B5) Start FaSSGF dissolution

✓ Add formulation



✓ Start rotating spindles and timer

B6) FaSSGF sampling

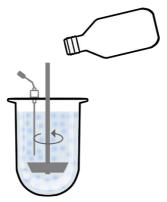
✓ Withdraw sample

✓ Attach fresh filter

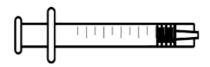
Pre-saturate filter (see Section A10) and RETURN filtrate back to vessel

 ✓ Filter and collect remaining dissolution sample (about 1 mL) for analysis

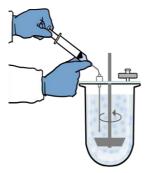
✓ Discard filter, re-attach syringe to cannula


✓ Dilute filtrate immediately (see Section A6)

✓ Repeat sampling at remaining time points until end of FaSSGF dissolution (60 minutes)


B7) Add Concentrated FaSSIF to FaSSGF

At the end of FaSSGF dissolution, pour 450mL of pre-heated
Concentrated FaSSIF (from B1b) directly into each vessel over 15 seconds



B8) Sampling after addition of Concentrated FaSSIF

 ✓ Discard the syringe used for FaSSGF Sampling and replace with a new FRESH Syringe at the start of the FaSSIF Sampling

✓ 5 minutes after the addition start sampling

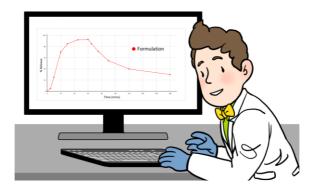
© Biorelevant.com Ltd

✓ Attach fresh filter

✓ Pre-saturate filter (see Section A10) and return filtrate back to vessel

 ✓ Filter and collect remaining dissolution sample (about 1mL) for analysis

✓ Discard filter, re-attach syringe to cannula


✓ Dilute filtrate immediately (see Section A6)

 Repeat sampling at remaining time points (typically 3hours after start of experiment)

B9) Generate dissolution profile

- ✓ Analyse samples by HPLC
- ✓ Check the quality of chromatograms
- ✓ Generate dissolution profile of formulation

The goal is:

- ① Understand dissolution behaviour after conversion of the stomach to intestinal fluid
- () For troubleshooting, contact our Help Desk
- ① Read our Learning Centre posts for more detailed information